An HMM-Based Approach for Off-Line Unconstrained Handwritten Word Modeling and Recognition
نویسندگان
چکیده
ÐThis paper describes a hidden Markov model-based approach designed to recognize off-line unconstrained handwritten words for large vocabularies. After preprocessing, a word image is segmented into letters or pseudoletters and represented by two feature sequences of equal length, each consisting of an alternating sequence of shape-symbols and segmentationsymbols, which are both explicitly modeled. The word model is made up of the concatenation of appropriate letter models consisting of elementary HMMs and an HMM-based interpolation technique is used to optimally combine the two feature sets. Two rejection mechanisms are considered depending on whether or not the word image is guaranteed to belong to the lexicon. Experiments carried out on real-life data show that the proposed approach can be successfully used for handwritten word recognition. Index TermsÐHandwriting modeling, preprocessing, segmentation, feature extraction, hidden Markov models, word recognition, rejection.
منابع مشابه
Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملRecognition of Off-Line Handwritten Arabic Words Using Hidden Markov Model Approach
Hidden Markov Models (HMM) have been used with some success in recognizing printed Arabic words. In this paper, a complete scheme for totally unconstrained Arabic handwritten word recognition based on a Model discriminant HMM is presented. A complete system able to classify Arabic-Handwritten words of one hundred different writers is proposed and discussed. The system first attempts to remove s...
متن کاملArabic Handwritten Word Recognition Using HMMs with Explicit State Duration
We describe an offline unconstrained Arabic handwritten word recognition system based on segmentation-free approach and discrete hidden Markov models (HMMs) with explicit state duration. Character durations play a significant part in the recognition of cursive handwriting. The duration information is still mostly disregarded in HMM-based automatic cursive handwriting recognizers due to the fact...
متن کاملUnconstrained Farsi handwritten word recognition using fuzzy vector quantization and hidden Markov models
An unconstrained Farsi handwritten word recognition system based on fuzzy vector quantization (FVQ) and hidden Markov model (HMM) for reading city names in postal addresses is presented. Preprocessing techniques including binarization, noise removal, slope correction and baseline estimation are described. Each word image is represented by its contour information. The histogram of chain code slo...
متن کاملWord segmentation of off-line handwritten documents
Word segmentation is the most critical pre-processing step for any handwritten document recognition/retrieval system. This paper describes an approach to separate a line of unconstrained (written in a natural manner) handwritten text into words. When the writing style is unconstrained, recognition of individual components may be unreliable so they must be grouped together into word hypotheses, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 21 شماره
صفحات -
تاریخ انتشار 1999